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Abstract
Non-equilibrium critical dynamics of the two-dimensional XY model is
investigated with Hamiltonian equations of motion. Critical relaxation starting
from both ordered and random states is carefully analyzed, and the short-
time dynamic scaling behavior is revealed. Logarithmic corrections to scaling
are detected for relaxation with a random initial state, while power-law
corrections to scaling are observed for relaxation with an ordered initial state.
The static exponent η and dynamic exponent z are determined around and
below the Kosterlitz–Thouless phase transition temperature. Our results show
that the deterministic dynamics described by Hamiltonian equations is in the
same universality class as the stochastic dynamics described by Monte Carlo
algorithms and Langevin equations.

PACS numbers: 64.60.Ht, 05.20.−y

1. Introduction

It is believed that statistical mechanics was developed for describing statistical properties
of many-body systems, when microscopic dynamics was inaccessible to any kind of
investigations. For an equilibrium state, for example, the ensemble theory provides an effective
description. It allows the prediction of static properties of many-body systems directly from
the underlying interactions between molecules or spins etc, without solving microscopic
equations of motion. During recent decades, however, the advent of powerful computers
has made possible, to some extent, direct access to microscopic dynamics through molecular
dynamic simulations of macroscopic systems [1–8]. For example, Hamiltonian equations of
the O(N) vector model and XY model have been numerically solved [9–14]. Since the energy
is conserved during the time evolution, solutions of the Hamiltonian equations in the long-time
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regime actually generate a microcanonical ensemble for the equilibrium state. Performing the
time average of physical observables, phase transition temperatures and corresponding critical
exponents have been estimated by introducing standard techniques developed in statistical
mechanics. The results are in agreement with those obtained from a canonical ensemble.

In principle, microscopic equations of motion should describe not only equilibrium
properties but also dynamic properties of many-body systems. In statistical mechanics,
under certain conditions the dynamic evolution may be approximately described by stochastic
equations of motion, typically at the mesoscopic level, e.g., Langevin equations or Monte Carlo
algorithms. For stochastic dynamics, critical slowing down and dynamic scaling behavior
around a continuous phase transition are characteristic dynamic properties. Microscopic
equations of motion such as Newton equations and Hamiltonian equations are much different
from stochastic equations of motion, and essentially deterministic in nature. Stochastic
features come only from initial states. It is naturally important to study dynamic properties
of microscopic equations of motion, and to investigate whether microscopic dynamics and
stochastic dynamics belong to a same dynamic universality class. Due to critical slowing
down and errors induced by a finite �t in numerical solutions, however, it is rather difficult to
investigate the critical dynamic behavior in the long-time regime.

In the past years critical dynamics far from equilibrium has been systematically
investigated with Langevin equations and Monte Carlo methods [15–21]. The results confirm
the existence of a rather general dynamic scaling form at macroscopic early times, when the
dynamic systems are still far from equilibrium. The physical origin of the dynamic scaling
behavior is the divergent correlating time around the phase transition temperature. Recent
progress includes, for example, theoretical calculations and numerical simulations of XY
models and Josephson junction arrays [22–24], various critical systems [25–31] and ageing
phenomena [32–35]. Application of the dynamic approach to the weak first-order phase
transitions is also inspiring [36–38].

Now it is challenging whether microscopic equations of motion also lead to a dynamic
scaling form at the short-time regime, and especially whether the dynamic universality class
of microscopic dynamics is the same as that of stochastic dynamics. Since here only the
dynamic behavior at early times is concerned, one does not suffer from critical slowing down,
and errors induced by a finite �t are also under control in numerical solutions. It is possible
to draw a relatively convincing conclusion. Such an effort has been made in Ref. [5], taking
the φ4 theory as an example. The dynamic relaxation starting from a random state is carefully
examined, and the short-time dynamic scaling form is revealed. Somewhat surprisingly, the
dynamic exponent z is determined to be z = 2.15(2). This value of z is in agreement with
z = 2.16(2) estimated for the Monte Carlo dynamics of the two-dimensional (2D) Ising model,
and far from z = 1 naively expected from the power counting and/or Lorentz invariance of
the φ4 theory. Possibly, the initial condition plays an important role. For example, it violates
the Lorentz invariance, and may essentially contribute to the renormalization of time.

It is well known that in equilibrium states, the φ4 theory and Ising model belong to a same
static universality class. For the dynamic process starting from a random state, as stated above,
the Hamiltonian dynamics of the φ4 theory falls into the dynamic universality class of the
Monte Carlo dynamics of the Ising model [5]. This phenomenon is unusual, and it needs further
investigation. In this paper, we present numerical solutions of the Hamiltonian equations of
the 2D XY model, and examine the dynamic scaling behavior in dynamic processes starting
from both ordered and random states. Results will be compared with those of the Monte Carlo
dynamics. The motivation for choosing the 2D XY model is the following.

The 2D XY model may describe the critical behavior of thin films of superfluid helium,
and has been extensively studied in the past years. It is the simplest model exhibiting a
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Kosterlitz–Thouless (KT) phase transition. At the transition temperature TKT, the spatial
correlation length diverges exponentially. Below TKT, the system remains critical and no real
order emerges. These features together make the KT phase transition in the 2D XY model
much different from the second-order one in the φ4 theory. The Hamiltonian dynamics of the
2D XY model has been investigated in various aspects, such as the KT phase transition and its
relation to geometry and topology etc [6, 11–14]. All these works concentrate mostly on the
equilibrium state or the dynamic indication in the equilibrium state. Therefore, it is important
to explore the critical dynamic behavior of the Hamiltonian dynamics, when the system is still
far from equilibrium. Especially, one should examine whether the short-time dynamic scaling
form holds in the whole critical regime, and how the static and dynamic critical exponents
depend on temperatures.

In addition, the 2D XY model allows a more systematic study of the Hamiltonian dynamics
in non-equilibrium states. For the φ4 theory, for example, it is hard to address the relaxation
process starting from an ordered state, in comparison with the Ising model. The reason might
be that in connecting the φ4 theory to the Ising model, one already assumes that around the
critical temperature, the order parameter φ is not too far from zero. For the 2D XY model,
however, dynamic processes with any initial state can be considered.

On the other hand, due to the continuous rotational symmetry, there exist vortices
and vortex pairs in the 2D XY model. These topological excitations lead to nontrivial
dynamic effects. In the stochastic dynamics described by Langevin equations or Monte
Carlo algorithms, for example, there emerge logarithmic corrections to scaling in critical
relaxation starting from a random state [22, 39, 40]. It is instructive to examine the dynamic
effects of topological excitations in the deterministic dynamics described by Hamiltonian
equations. Detecting logarithmic corrections to scaling needs much more computer times than
the calculation without corrections to scaling [5]. But it is now possible, for computers at our
hand are much more powerful than a few years ago.

The model, Hamiltonian equations and scaling analysis of the non-equilibrium dynamic
behavior are described in section 2. Numerical solutions are presented in section 3. The final
section contains the conclusion.

2. Scaling behavior and corrections to scaling

2.1. Model

In statistical mechanics, the 2D XY model is defined by the Hamiltonian

HXY = J
∑
〈ij〉

[1 − �Si · �Sj )] = J
∑
〈ij〉

[1 − cos(θi − θj )], (1)

where i and j label the lattice sites on a square lattice, �Si and �Sj are planar unit vectors, θi

and θj are the rotation angles of �Si and �Sj respectively, and J > 0 is the coupling constant.
The summation is extended over all the nearest neighbors. In the following, without loss of
generality, we set J = 1, and the lattice spacing equal to unity. It is well known that the 2D
XY model undergoes a Kosterlitz–Thouless phase transition at the temperature TKT. Below
TKT, the system remains critical and no real order emerges.

Similar as the Ising model, the XY model does not possess an intrinsic dynamics from
the Hamiltonian HXY itself. Langevin equations, Monte Carlo algorithms and Hamiltonian
equations may be introduced to describe the dynamic evolution of the system. For example,
one usually adds a kinetic energy term to introduce the Hamiltonian dynamics,

H =
L∑
i

[
p2

i

2
+ HXY

]
, (2)
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where pi = θ̇i is the spin momentum. The choice J = 1 is equivalent to setting the time
unit and to rescaling the momentum accordingly. With the kinetic energy term, spins in fact
become rotators, and the XY model becomes a system of coupled rotators. The Hamiltonian
equations of motion are

θ̈ i (t) = −
4∑

j (i)

[sin[θi(t) − θj (t)]], (3)

where the summation is over the four neighbors of site i. We choose periodic boundary
conditions in both x and y directions. Both ordered and random initial states are considered
in our numerical solutions. Spins are randomly chosen with θi(0) ∈ [0, 2π ] for the random
initial state, and fixed at the x direction for the ordered initial state. A Gaussian distribution is
assumed for the initial momenta pi(0), and its width is fixed by the energy density ε = E/L2,
with E being the total energy and L being the lattice size. Numerical integration of equation (3)
is performed using the velocity Verlet algorithm. Thermodynamical quantities are computed
by averaging over time. This computation is repeated for several values of the energy density
at the critical regime.

Since equation (3) conserves the energy, its solutions in the long-time regime are assumed
to generate a micro-canonical ensemble for the equilibrium state. In this case, the temperature
could not be introduced externally as in a canonical ensemble, but can be defined internally
by the averaged kinetic energy. In our short-time dynamic approach, the total energy density
ε is actually a more convenient controlling parameter, since it is conserved and could be input
from the initial state. Previous study of the static properties of equation (3) shows that at low
temperatures, i.e., T � TKT, the equipartition of kinetic energy and potential energy gives
ε(T ) ∼ T [11, 12]. This is the so-called linear regime, where angles between neighboring
spins are small. In the literature, the transition temperature TKT is reported to be between 0.89
and 0.90 [11, 41]. In this paper, we concentrate also on the regime T � TKT.

Equation (3) is deterministic in nature, and the randomness of the dynamic system comes
from initial conditions. In both ordered and random initial states, the initial momenta pi(0)

are randomly distributed according to a Gaussian distribution. In the random initial state,
the initial spin angles θi(0) are also distributed randomly and uniformly between [0, 2π ].
The randomness in the initial state leads to the stochastic evolution of the kinetic energy. The
stochastic kinetic energy serves as a kind of noises or a heat bath to the potential energy. This
is similar to the case of stochastic dynamics, where the Hamiltonian of the system is simply the
potential energy HXY , but coupled to a heat bath with the temperature T, such as in Langevin
equations or Monte Carlo algorithms.

Denoting a spin at the time t as
−→
S i(t), as usual, we define the magnetization, its second

moment and the autocorrelation function at the time t as

−→
M(t) ≡

〈∑
i

−→
S i(t)

〉/
L2, (4)

M(2)(t) ≡
〈

[
∑

i

−→
S i(t)]

2

〉/
L4, (5)

and

A(t) ≡
〈∑

i

−→
S i(0).

−→
S i(t)

〉/
L2, (6)

respectively. Here L is the lattice size.
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2.2. Ordered start

For the dynamic process starting from an ordered state, e.g.,
−→
M(0) = (Mx(0),My(0)) =

(1, 0), we assume a universal dynamic scaling form for the kth moment of the magnetization,
which is valid up to the macroscopic short-time regime,

M(k)(t, L) = λ−kη/2M(k)(λ−zt, λ−1L), k = 1, 2. (7)

Here M(t) ≡ M(1)(t) is the x component of the magnetization vector, η is the usual static
exponent, z is the dynamic exponent and λ is an arbitrary scale factor. The scaling form in
equation (7) has been suggested for the Monte Carlo dynamics in the past years [16, 17, 19, 20],
and recently confirmed by renormalization group calculations with Langevin equations [21].
We will show that it holds also for the Hamiltonian dynamics.

Taking λ = t1/z and neglecting the finite size effect in equation (7), one immediately
obtains the power-law behavior of the magnetization

M(t) ∼ t−η/2z. (8)

To determine z independently, we introduce a time-dependent Binder cumulant

U(t, L) = (M(2) − M2)/M2. (9)

When the nonequilibrium spatial correlation length at the time t is much smaller than the
lattice size L, the Binder cumulant U ∼ 1/Ld . Simple finite size scaling analysis [20] leads to

U(t, L) ∼ td/z. (10)

Here d = 2 is the spatial dimension.
In general, the scaling behavior in equations (8) and (10) is reached only in the large-t

limit. Before reaching the limit, in principle, there exist corrections to scaling. In the cases of
the simple Ising and Potts models, correction to scaling are rather weak [20]. For the statistical
systems with disorder, frustration or at a KT phase transition, however, corrections to scaling
could be strong due to existence of many meta stable states. For accurate estimate of critical
exponents, one needs to take into account corrections to scaling. For the 2D XY model,
for example, Monte Carlo simulations suggest that there may exist power-law corrections to
scaling for the ordered start [22],

M(t) ∼ t−η/2z(1 + c/t), (11)

U(t) ∼ td/z(1 + c/t). (12)

2.3. Random start

For the dynamic process starting from a random state with a zero or small initial magnetization
�M(0) = (m0, 0), a generalized dynamic scaling form can be written down, e.g., for the kth

moment of the magnetization

M(k)(t,m0, L) = λ−kη/2M(k)(λ−zt, λx0m0, λ
−1L), k = 1, 2. (13)

Here x0 is an independent exponent describing the scaling behavior of m0. This dynamic
scaling form was first derived with renormalization group methods for the Langevin dynamics
[15], then confirmed with Monte Carlo simulations [5, 18, 20]. It also explains the experiments
in spin glasses.

For the random start, however, corrections to scaling are very strong for the 2D XY model.
In [39], with Langevin equations one shows that the corrections to scaling are logarithmic. It
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is believed that the logarithmic corrections are induced by the vortex-pair annihilation, and do
not disappear within early times [39].

We first consider the case of m0 = 0 and with a sufficiently large lattice. Assuming the
logarithmic correction for the nonequilibrium spatial correlation length, scaling analysis leads
to the dynamic scaling forms for the second moment and autocorrelation function [39]

M(2)(t) ∼ [t/(ln(t) + c)](2−η)/z, (14)

A(t) ∼ [t/(ln(t) + c)]θ−d/z. (15)

These logarithmic corrections to scaling have been confirmed with Monte Carlo simulations
[22, 35]. Since the logarithmic correction to scaling is an important feature of the 2D XY
model and essentially affects the measurements of the critical exponents, it is important to
investigate whether such a logarithmic correction to scaling emerges also in the Hamiltonian
dynamics.

For a nonzero but sufficiently small m0 and with a sufficiently large lattice, one can deduce
from equation (13)

M(m0, t) ∼ t θ . (16)

Here θ is related to x0 by θ = (x0 − η/2)/z [15, 20]. Careful scaling analysis shows that
the above power-law behavior holds within a time scale t0 ∼ m

−z/x0
0 . Typically, the exponent

θ is positive [5, 15, 20, 22]. Therefore, this anomalous behavior is also called a critical
initial increase of the magnetization. Usually, the correction to scaling for M(m0, t) is weak,
since the nonzero m0 could suppress the dynamic effect of the vortex pairs. Even if there
is a correction, it does not affect so much our estimate of the dynamic exponent z with
equation (15), for θ usually is rather small, in comparison with d/z.

3. Numerical solutions

Our aim is to investigate whether the dynamics scaling behavior including the corrections
to scaling in equations (11), (12) and (14)–(16) holds for the Hamiltonian dynamics, up to
macroscopic early times. In order to detect the corrections to scaling, and obtain accurate
values of the critical exponents, we solve equation (3) up to t = 10 000 with a lattice size
L = 256. An exceptional case is for the random start with a small initial magnetization m0,
where it is only up to t = 1000. Due to the small m0, one suffers from large fluctuations
at longer times. To study possible finite size effects, numerical solutions are also performed
with L=128 maximally to t = 10 000. Samples of the initial configurations for average are
15 000. To estimate the statistical errors, total samples are divided into a few subgroups. If
the fluctuation along the time direction is comparable with the statistical error, it will also be
taken into account.

Our main results are obtained with �t = 0.05 for the energy densities ε = 0.90, 0.89, 0.80
and 0.70. We have also performed the numerical solutions with �t = 0.01, and confirmed
that the errors induced by the finite �t have been negligibly small.

3.1. Ordered start

Let us start the analysis of our numerical solutions from the dynamic process with an ordered
initial state, since corrections to scaling are relatively weaker in this case. In figures 1 and
2, the Binder cumulant and magnetization of the 2 D XY model with an ordered start are
displayed with solid lines on a log–log scale. For the Binder cumulant U(t) in figure 1, careful
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Figure 1. The time-dependent Binder cumulant of the 2D XY model with the ordered start.
Solid lines are for the energy densities ε = 0.9, 0.89, 0.8 and 0.7 (from above) with a lattice size
L = 256. The dashed line shows a power-law fit for ε = 0.8. The crossed line is obtained with
L = 128 for ε = 0.89.

000010001001

      t

1

M(t)

ε = 0.9

0.7

0.5

Figure 2. The magnetization of the 2D dynamic XY model with the ordered start. Solid lines
are for ε = 0.9, 0.89, 0.80 and 0.7 (from below) with a lattice size L = 256. The dashed line
shows a power-law fit for ε = 0.9 at later times. Dots fitted to the solid lines are with power-law
corrections to scaling.

analysis shows that the correction to scaling is negligibly small. For example, the fluctuation
for the measurements of the exponent d/z in different time intervals is well within 1.0%,
smaller than the statistical error. Even if one fits the curves in figure 1 with the Ansatz in
equation (12), it gives the same results as those without taking into account the correction
to scaling. The relatively worse case is ε = 0.8. In figure 1, a power-law fit to the curve
of ε = 0.8 is shown with the dashed line. The deviation from the power law is still within
about 100 time steps. The exponent d/z measured from the slope of the curves for all the
energy densities ε = 0.90, 0.89, 0.80 and 0.70 is given in table 1. The dynamic exponent
estimated from d/z is denoted as z1 in the table, and its values are very close to 2.0 for
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Table 1. Critical exponents obtained with Hamiltonian equations of the 2D XY model, after taking
into accounts logarithmic corrections to scaling for M(t) and U(t) with the ordered start, and
power-law corrections to scaling for M(2)(t), A(t) and M(m0, t) with the random start. z1 is the
dynamic exponent z estimated from d/z, and η is calculated from η/2z by taking z1 as input. z2 is
estimated from (d −η)/z with η as input, and z3 is calculated from d/z−θ and θ . For comparison,
the corresponding critical exponents obtained from Monte Carlo simulations are also given. The
linear relation ε(T ) = T between the temperature and energy density is assumed.

ε = 0.9 0.89 0.8 0.7

U(t) d/z 0.998(13) 0.997(10) 0.998(6) 0.994(8)

z1 2.00(3) 2.00(2) 2.00(1) 2.01(2)

M(t) η/2z 0.0621(10) 0.0594(12) 0.0461(9) 0.0361(4)

η 0.248(7) 0.237(9) 0.184(4) 0.144(5)

[22] z1 2.00(2) 2.01(1) 2.00(1) 2.01(1)

η 0.246(3) 0.234(2) 0.176(2) 0.144(1)

M(2)(t) (d − η)/z 0.872(15) 0.892(14) 0.907(9) 0.917(8)

z2 2.01(4) 1.98(3) 2.01(2) 2.02(2)

A(t) d/z − θ 0.763(8) 0.743(6) 0.721(7) 0.701(5)

M(m0, t) θ 0.235(7) 0.246(5) 0.263(3) 0.279(3)

z3 2.00(3) 2.02(2) 2.03(2) 2.04(2)

[22] (d − η)/z 0.860(12) 0.877(9) 0.897(10) 0.920(8)

d/z − θ 0.756(5) 0.738(4) 0.711(5) 0.695(6)

θ 0.241(2) 0.249(2) 0.263(4) 0.280(4)

all the energy densities, the same as that for the Langevin dynamics [39] and Monte Carlo
dynamics [22].

In figure 2, the dashed line shows a power-law fit to the curve of the magnetization M(t)

with ε = 0.9 at later times. Obviously, the curve deviates visibly from the power-law behavior
in the first some hundred time steps. This leads to an error of a few per cent for the exponent
η/2z. For accurate measurements of the critical exponents, therefore, corrections to scaling
should be taken into account. In figure 2, dots show the fitting with the correction to scaling
in equation (11), and a good fit is observed up to t ∼ 50. We may also vary the form of the
correction to scaling to M(t) ∼ t−η/2z(1 + c/tb), but it turns out that b = 1 yields the best fit.
The final values of η/2z are listed in table 1.

In table 1, the static exponent η is calculated from η/2z, taking the dynamic exponent z1

as input. For comparison, results obtained from Monte Carlo simulations are also given in
table [22]. Assuming ε(T ) = T , both z1 and η estimated for the Hamiltonian dynamics agree
well with those from Monte Carlo simulations. Since the transition temperature TKT locates
between 0.89 and 0.90, η at TKT is about 0.24, slightly smaller than the theoretical value 1/4.
On the other hand, according to the numerical solutions of equation (3) in equilibrium [11],
the linear relation ε(T ) = T may be modified when the temperature approaches TKT, e.g., by
3% or 4%. Since the static exponent η is defined in equilibrium and should be independent
of dynamics, our results suggest that the modification of the linear relation ε(T ) = T around
TKT could be smaller. The finite size effects and/or possible errors induced by a finite �t in
the numerical solutions in equilibrium might be responsible for it. Our dynamic approach in
the short-time regime is performed with large lattices, and the errors induced by a finite �t

are also under control.

3.2. Random start

For the 2D XY model, the dynamic process with a random initial state is somewhat
complicated, for there exist logarithmic corrections to scaling. Numerically it is subtle to
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Figure 3. The autocorrelation function of the 2D dynamic XY model with the random start. Solid
lines are for ε = 0.9, 0.89, 0.8 and 0.7 (from below). The dashed line shows a power-law fit for
ε = 0.7. Dots fitted to the solid lines are with logarithmic corrections to scaling. The slope of the
dashed line is d/z− θ = 0.617, far from d/z− θ = 0.701 after taking into account the logarithmic
correction to scaling.

000010001001
t

0.1

1

10

M   (t)
 (2)

ε = 0.9

0.7

Figure 4. The second moment of the 2D dynamic XY model with the random start. Solid lines
are for ε = 0.9, 0.89, 0.8 and 0.7 (from below).

detect a logarithmic correction to scaling, although it is strong. In figures 3 and 4, the
autocorrelation function and second moment of the 2D XY model with the random start are
displayed on a log–log scale. Looking at the curves by eyes, they are not too far from a
power-law behavior. If one measures the critical exponents directly from the slopes of the
curves, however, the results deviate from real ones by 10% to 20%.

According to the argument with Langevin equations in [39], the corrections to scaling
take the logarithmic forms in equations (14) and (15). In figure 3, for example, dots represent
the fitting with the logarithmic correction to scaling, and fit well the numerical data of the
autocorrelation functions from rather early times. The situation is similar for the second
moments in figure 4. In table 1, the extracted values of the exponents (2 − η)/z and d/z − θ
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100 1000
t

0.01

0.89

ε = 0.9

0.8

0.7

  M(m  , t) 0

Figure 5. The initial increase of the magnetization of the 2D dynamic XY model with the random
start. The initial magnetization m0 for ε = 0.9, 0.89, 0.8 and 0.7 are 0.008, 0.008, 0.005 and
0.003, respectively.

are given. Here we emphasize that the logarithmic correction is so strong that the effective
exponent obtained with a power-law fit would be correct only in the limit of t → ∞. In
the measurements of the critical exponents, therefore, it is important to take into account the
corrections to scaling.

To complete our investigation, especially to verify the exponent d/z − θ in the scaling
behavior of A(t) in equation (15), we finally perform the numerical solutions from a
random start but with a nonzero initial magnetization m0. Since we need a small initial
magnetization m0 in obtaining the scaling behavior in equation (16) and therefore suffer from
large fluctuations in longer times, the solutions are presented only up to t = 1000. In figure 5,
M(m0, t) is displayed with solid lines on a log-log scale. From these data, we cannot detect
a logarithmic correction. In a time interval [10,1000], direct measurements of the slope yield
the same exponents as those with any correction to scaling.

In table 1, we summarize all the exponents extracted from A(t),M(2)(t) and M(m0, t)

for different energy densities. For comparison, the critical exponents (d − η)/z, d/z − θ

and θ measured from Monte Carlo simulations have been also given [22]. Assuming again
ε(T ) = T , the results for the Hamiltonian dynamics agree well with those for the Monte Carlo
dynamics. At the temperatures around TKT, e.g., T = 0.90 and 0.89, there might be small
deviation from ε(T ) = T , but it looks not so significant.

To understand more the results in table 1, one may calculate the dynamic exponent z

from (d − η)/z, taking η measured from the dynamic process with the ordered start as input.
This value of the dynamic exponent is denoted as z2 in the table. In addition, one may also
estimate the dynamic exponent z from d/z − θ and θ . This value is denoted as z3. Similar
as z1 calculated from the Binder cumulant U(t, L) in the dynamic process with the ordered
start, both z2 and z3 are very close to 2.0, which is expected from the Langevin dynamics and
Monte Carlo dynamics.

4. Conclusions

We have numerically solved the Hamiltonian equations of the 2D XY model, and investigated
the dynamic processes starting from both ordered and random states. The short-time dynamic
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scaling behavior is revealed in the whole critical regime, and the static exponent η and dynamic
exponent z are extracted. In different measurements of the physical observables, the dynamic
exponent z takes values well in agreement with 2.0 for all energy densities. In addition,
logarithmic corrections to scaling are detected in the dynamic process with a random initial
state, while power-law corrections to scaling are observed in the dynamic process with an
ordered initial state. All these results indicate that the deterministic dynamics described by
Hamiltonian equations is indeed in the same dynamic universality class as the stochastic
dynamics described by Langevin equations and Monte Carlo algorithms. The values of the
static exponent η are also consistent with those obtained in dynamic Monte Carlo simulations.

In comparison with the numerical solutions of the Hamiltonian equations for the φ4 theory
in [5], our results for the 2D XY model extend the dynamic scaling form far from equilibrium
to the KT phase transition, and provide comprehensive understanding of the Hamiltonian
dynamics including critical relaxation starting from an ordered state and corrections to scaling.
Naive power counting might expect that the dynamic exponent z of the Hamiltonian equations
is around 1.0, rather than 2.0. It is possible that the initial condition plays an important role
here. More theoretical techniques such as renormalization group methods should be developed
to understand this phenomenon. Furthermore, the critical dynamic behavior in the long-time
regime should be explored.
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Corrigendum

Corrigendum on ’Non-equilibrium critical dynamics of two-dimensional XY model
with Hamiltonian equations of motion’
Asad A and Zheng B 2007 J. Phys. A: Math. Theor. 40 9957–9968

I regret that part of the conclusion in the above paper is incorrect. Under my supervision,
the computer simulations of the article were done by my former student A Asad. In the past
months, I and my other students were involved in related research topics. We are not able to
reproduce part of the results. According to our new computations, the dynamic exponent for
the dynamic process starting from an ordered state is z = 1, different from z = 2 reported in
the above paper and in Monte Carlo simulations [1,2]. For the dynamic process starting from
a disordered state, the numerical solutions should be also reformulated. Detailed results will
be reported elsewhere.
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